Specificity of Atonal and Scute bHLH factors: analysis of cognate E box binding sites and the influence of Senseless.
نویسندگان
چکیده
The question of how proneural bHLH transcription factors recognize and regulate their target genes is still relatively poorly understood. We previously showed that Scute (Sc) and Atonal (Ato) target genes have different cognate E box motifs, suggesting that specific DNA interactions contribute to differences in their target gene specificity. Here we show that Sc and Ato proteins (in combination with Daughterless) can activate reporter gene expression via their cognate E boxes in a non-neuronal cell culture system, suggesting that the proteins have strong intrinsic abilities to recognize different E box motifs in the absence of specialized cofactors. Functional comparison of E boxes from several target genes and site-directed mutagenesis of E box motifs suggests that specificity and activity require further sequence elements flanking both sides of the previously identified E box motifs. Moreover, the proneural cofactor, Senseless, can augment the function of Sc and Ato on their cognate E boxes and therefore may contribute to proneural specificity.
منابع مشابه
The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites.
For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors requi...
متن کاملSenseless and Daughterless confer neuronal identity to epithelial cells in the Drosophila wing margin.
The basic helix-loop-helix (bHLH) proneural proteins Achaete and Scute cooperate with the class I bHLH protein Daughterless to specify the precursors of most sensory bristles in Drosophila. However, the mechanosensory bristles at the Drosophila wing margin have been reported to be unaffected by mutations that remove Achaete and Scute function. Indeed, the proneural gene(s) for these organs is n...
متن کاملGenomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape.
DNA sequence is a major determinant of the binding specificity of transcription factors (TFs) for their genomic targets. However, eukaryotic cells often express, at the same time, TFs with highly similar DNA binding motifs but distinct in vivo targets. Currently, it is not well understood how TFs with seemingly identical DNA motifs achieve unique specificities in vivo. Here, we used custom prot...
متن کاملamos, a Proneural Gene for Drosophila Olfactory Sense Organs that Is Regulated by lozenge
In a variety of organisms, early neurogenesis requires the function of basic-helix-loop-helix (bHLH) transcription factors. For the Drosophila PNS, such transcription factors are encoded by the proneural genes (atonal and the achaete-scute complex, AS-C). We have identified a proneural gene, amos, that has strong similarity with atonal in its bHLH domain. We present evidence that amos is requir...
متن کاملEvolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila.
Members of the Achaete-scute family of basic helix-loop-helix transcription factors are involved in cell fate specification in vertebrates and invertebrates. We have isolated and characterized a cnidarian achaete-scute homolog, CnASH, from Hydra vulgaris, a representative of an evolutionarily ancient branch of metazoans. There is a single achaete-scute gene in Hydra, and the bHLH domain of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes to cells : devoted to molecular & cellular mechanisms
دوره 13 9 شماره
صفحات -
تاریخ انتشار 2008